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ABSTRACT 
In this paper we present the development of an evidence-

based search planner for a mobile assistive robot to 

autonomously search for a dynamic person in a multi-room 

home environment in order to provide assistance. We solve the 

dynamic person search problem by uniquely considering 

evidence of household objects along with a user spatial-

temporal model to increase the probability of finding the user. 

Our planner utilizes a Partially Observable Markov Decision 

Process (POMDP) to plan optimal robot search paths in the 

environment as the user and evidence locations are partially 

observable. Extensive simulated experiments in a home 

environment were conducted to compare our proposed 

evidence-based search approach with 1) a search technique 

without prior user information, and 2) a search technique that 

only uses a user model. The results show that our proposed 

search technique has higher success rates for finding the user 

and is more robust to the dynamic behaviors of the user. 

 

INTRODUCTION 
 More than 1.2 million Canadians over the age of 65 are 

living alone, accounting for 25% of the senior population in 

Canada [1]. Socially assistive robots can be used to assist these 

individuals with activities of daily living such as providing 

reminders, aiding with meal preparation and eating, dressing, 

and hygiene activities [2]–[5], and facilitating recreational 

activities such as exercise and memory games [6]–[8]. In 

particular, these robots provide social and cognitive support to 

promote aging-in-place. In order to initiate such assistance, a 

socially assistive robot needs to first search for and find a user 

in his/her home [9].  

 In this paper, we address the search problem of a mobile 

social robot searching for a dynamic user in a multi-room home 

environment before a time limit. This task can be challenging 

for several reasons. The robot only uses its onboard sensors to 

detect the user in the environment. Furthermore, the user can be 

moving from region to region during the search and also 

revisiting previous locations. As the robot is also sharing the 

environment with people, it would need to consider social 

etiquette rules [10].  

In the context of robot searching an indoor environment for 

people, many probabilistic search techniques have been 

designed that use knowledge of past information to construct a 

user model and generate the search policy, e.g. [2], [11]–[18]. 

Examples of past information include frequency of past 

observations, last known locations, and activity schedule, 

which are combined to generate a prior user location model. 

These prior models are usually represented as a probability 

density function (PDF) over the entire search space or a set of 

selected navigation points, each assigned with a probability of 

the person being there. Based on the user models, the search 

policies used for a single target prioritize locations in order to 

maximize the probability of finding the user [2], [11], [13], 

[19], [20]. In multi-target scenarios, common policies used are 

to maximize the number of users found [15], [17] or maximize 

the probability of encountering at least one person [14]. 

In this paper, we address the dynamic person search 

problem by uniquely considering the evidence around the home 

to increase the probability of finding the dynamic user. Such 

evidence is based on common household objects such as lights 

and TVs, whose presence or state are often associated with the 

location or activity a user is engaging in [9], [10]. Therefore, if 

the robot can observe such evidence during a search for a user, 

this information can also be used with a prior user model to aid 

in the search. The proposed approach can also handle changes 

in the user’s behaviors that deviate from the prior user model.  

We present a novel probabilistic search strategy that involves 

checking evidence around the home while searching for a 

single dynamic user in order to find them more quickly. The 

search problem is modelled as a Partially Observable Markov 

Decision Process (POMDP) where the objective is to maximize 
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the probability of finding the user within a time limit. 

Information on past user locations, activities and their 

associations with evidence is used to generate the prior user 

model for the POMDP. 

PERSON SEARCH IN INDOOR ENVIRONMENTS 
 Existing search approaches use one or more robots to 

search for people in indoor structured environments. These 

approaches can be categorized as either searching for: 1) static 

users [2], [11], [12], [20], or 2) dynamic users [13]–[19], [21]. 

 For example in [11], the HOMER robot was developed to 

deliver messages to multiple static recipients one at a time. The 

robot used a location likelihood function created manually for 

each message recipient. Upon receiving a request to deliver a 

message, the robot searched for the recipient by choosing the 

closest region with the maximum location likelihood that it had 

not yet searched. The search plan was terminated when the 

recipient was found or when all regions had been visited. In 

[12], a dynamic programming algorithm was used to search for 

multiple static targets with a single robot. The objective was to 

minimize the ratio of total search time to number of targets 

found. Past target location data was used to determine the 

expected number of targets in each region.  

 To account for target dynamic behaviors during search, in 

[13], a greedy search technique was used for searching for a 

single target at home using a robot. The planner used past 

frequencies of target locations to create a person occurrence 

map. The map was used to set navigation points where the 

robot would visit to find the target. Navigation points with the 

highest probability of finding the target were searched first. 

 Markov Decision Process (MDP) planners have been 

commonly used to search for targets by assigning rewards 

based on probabilities of target locations. For example, in [14], 

a finite horizon MDP approach was used to plan an optimal 

path in an office environment that maximizes the probability of 

encountering at least one dynamic target within a time limit. 

Each state was a non-occupied cell at a given time of day and 

the possible actions included moving to any of the 8 

neighboring cells. The reward for an action was the probability 

of encountering at least one target after moving to the new 

location at the next time step. The user location model was 

designed from survey responses regarding activities and 

activity durations throughout a day. The information was then 

used to fit a Poisson model where the random variable 

represented the rate of encountering each target. In [15], [16], 

an MDP planner was also used to maximize the expected 

number of dynamic targets found within a given time in a long-

term care environment. Rewards were assigned based on the 

spatial-temporal likelihood function for each target, which was 

determined as a function of the last known locations, user 

schedules, observation frequency and room types. In [18], the 

ARTOS robot searched for an elderly user at home by using a 

MDP planner to plan a sequence of reference points to visit. 

The reference points were locations where the elderly user can 

be found. The reward for searching a reference point was the 

probability of finding the user at that location divided by the 

cost of navigating to the reference point from the robot’s 

current location. 

  In [19], a POMDP planner was used to directly handle 

uncertainty of this world state, e.g. target location. A multi-

robot search plan was used for finding a moving target in both a 

museum and office environment. The fully observable states 

were the positions of all robots while the target location was 

partially observable. The POMDP policy mapped each state to 

an action for each robot at every time step. The initial target 

location was unknown, but the robots used a target motion 

model whereby targets were assumed to move at 1 m/s in a 

random direction. The reward for the POMDP was assigned to 

maximize the probability of finding the target within a time 

limit. In [21], a search planner was proposed where the belief 

over target location was represented as a probability 

distribution over discretized cells in a retirement home. The 

dimension of the belief states was reduced by performing 

Exponential Family Principal Component Analysis. A belief 

space MDP with the reduced state space was then used to 

minimize the time to find the target. The reward function 

maximized the expected total future reward for finding   poeple 

in the fastest search times. 

 In [17], the search problem of finding multiple dynamic 

users in a long-term care center by multiple robots was 

formulated as a travelling thief problem. The planner specified 

the order of regions to search and the amount of time spent to 

search each region. The reward for the optimization problem 

was determined based on user location and joint activity 

patterns, which were acquired by having the robots follow the 

users collectively for several days. 

 In the aforementioned search approaches, prior target 

location PDFs are used to make an initial prediction on target 

location such that the planner can find a target in a shorter 

expected time. However, if user behaviors change over time or 

during a specific day (for example, due to illness), the search 

plans can become sub-optimal.  

 Only a handful of papers have considered explicitly using 

last known target locations to predict the current target location. 

For example, in [2], a Hidden Markov Model (HMM) was used 

to model location based on activity sequences in a home 

environment. Given a sequence of recent known locations 

(which were observed), the HMM predicted the possible 

sequence of activities (hidden states) that described the past 

locations observed. These activities were then used to predict 

the current activity and location of the user, who is assumed to 

be static during the search. Once the target PDF was computed, 

a robot used a greedy approach to visit different rooms.  

 In [20], a socially assistive robot used information from 

motion sensors to infer the current target location within a 

home. In cases where the target was not detected by a motion 

sensor, the robot would search regions in the order where the 

target was most recently detected by the sensors. For both the 

approaches presented in [2], [20], user locations must be 

directly observed. However, there are scenarios where the user 

has not yet been seen or the user does not follow a specific 

sequence of activities. Furthermore, using information from 
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motion sensors placed all over the environment may also not be 

feasible.  

 Our novel search planner considers direct observations of 

evidence by the robot in the environment during the search in 

order to address such limitations. Namely, evidence can be 

directly correlated with the user’s location, thus increasing the 

probability of finding the target by visiting fewer regions. For 

example, if the robot observes that the living room light is on 

and the kitchen light is off after the user eats a meal, it can 

predict that the person is in the living room before searching 

that specific room. Furthermore, our proposed planner 

considers the trade-off of checking for evidence or directly 

looking for the user during the search in order to reduce the 

number of regions that need to be searched. 

EVIDENCE-BASED ROBOT SEARCH OF A DYNAMIC 
USER 

The objective of our proposed search approach is to 

determine the search plan that a robot should execute in order 

to find a dynamic user in a multi-room environment within a 

time limit. The problem consists of the following details:  
 

Activities: An activity is a specific task that the user is doing. 

The set of activities performed by the user is 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝐼}.  
 

Environment: The home environment consists of a set of 

regions 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝐽}, which can be occupied by the user. 

Examples of regions are rooms and hallways. 
 

Evidence: Evidence in the environment is represented by 

common household objects such as lights, dishes, TV.  The set 

of evidence that can be observed by the robot during the search 

is 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝐾}. Each evidence, 𝑒𝑘, has a binary state, 𝜃𝑘, 

i.e. on/off or present/absent. Some evidence states are 

correlated with activities while others are correlated with user 

locations. These are referred to as activity-based evidence and 

location-based evidence, respectively. For example, TV on/off 

is directly associated with the activity “watching TV” since the 

user cannot watch TV if it is not on. On the other hand, 

“kitchen light” on/off is associated with whether the user is in 

the kitchen. Let 𝑀 represent the total number of possible 

combinations of evidence states, and 𝑚 ∈ [1, 𝑀] represent a 

specific combination, then the state of each evidence for the 

𝑚𝑡ℎ combination can be expressed as {𝜃1,𝑚, 𝜃2,𝑚, … , 𝜃𝐾,𝑚}. 

The search plan involves a sequence of actions that the 

robot executes until the user is found. An action can be to 

search for the user in region 𝑟𝑗 or check the state 𝜃𝑘 of an 

evidence. We formulate the search problem as a finite horizon 

POMDP to handle the uncertainty associated with the user 

location and evidence states.  

To address the dynamic user search problem, we have 

developed the robot search architecture presented in Fig. 1. The 

user activity database consists of the prior information of the 

user in the environment. In particular, it consists of the user’s 

activity, user’s location, the time of day, and the state of the 

evidence. This information is used to generate four PDFs: 1) 

user activity-time, 2) user activity-location, 3) evidence-

location, and 4) evidence-activity.  

The activity-time PDF, 𝑃(𝑎𝑖| 𝑡𝑙), represents the probability 

that at discrete time 𝑡𝑙, the user performs activity 𝑎𝑖. The 

location-activity PDF, 𝑃(𝑟𝑗  |𝑎𝑖), represents the probability of 

the user being in region 𝑟𝑗 while performing activity 𝑎𝑖. The 

evidence-activity PDF, 𝑃(𝜃𝑘  | 𝑎𝑖), is the probability that when 

the user is performing activity 𝑎𝑖, evidence 𝑒𝑘’s state 𝜃𝑘 is 

present. The evidence-location PDF, 𝑃(𝜃𝑘  | 𝑟𝑗), is the 

probability that when the user is in 𝑟𝑗, evidence 𝑒𝑘’s state 𝜃𝑘 is 

present. 

These PDFs are then used by the Evidence-Location-

Activity (ELA) model, represented as a Bayesian Network, to 

provide the relationship between evidence, location and 

activity. The output of the ELA model is the initial joint user 

evidence belief, 𝑏0 (𝑟𝑗 , 𝜃1,𝑚, 𝜃2,𝑚, … , 𝜃𝐾,𝑚, 𝑡𝑙), which is the set 

of probabilities that, at discrete time 𝑡𝑙, the user is in region 𝑟𝑖; 

and the evidence states are (𝜃1,𝑚, 𝜃2,𝑚, … , 𝜃𝐾,𝑚).  

At the start of the search, the joint user evidence belief 𝑏 is 

equal to 𝑏0. This allows the search planner to reason about the 

current user location and evidence states using past user 

information. The POMDP solver then uses 𝑏 to find the optimal 

action that maximizes the probability of finding the user before 

the time limit. The action chosen by the POMDP solver is 

executed by the robot. The robot’s perception system then 

obtains an observation of the environment, which is used to 

update 𝑏. The process is repeated until the user is found or the 

time limit is reached. The detailed formulation of the ELA 

model and POMDP model are discussed below. 

 

 

Figure 1. Search architecture.  

EVIDENCE LOCATION ACTIVITY (ELA) MODEL 
As previously mentioned, the overall ELA model is 

represented by a Bayesian network, Fig. 2. A Bayesian network 

is used as it can relate multiple conditional probabilities (i.e., 

the 4 PDFs in the user probability model) to derive the belief 

state that is used by the POMDP model. The evidence 

considered in the ELA model is shown in Table 1. All evidence 

used in Table 1 have two states, i.e. on/off or present/absent. 

Dishes are dependent on the activity “meal eating” and “TV” is 

dependent on the activity “watching TV”. Therefore, both 

“dishes” and “TV” are activity-based evidence. The presence of 
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slippers outside the bedroom indicates that the user is in the 

bedroom; the presence of shoes in the hallway indicates that the 

user is at home. Therefore, both slippers and shoes are location-

based evidence. The light in each room is dependent on 

whether the user is in that room, which is also location-based 

evidence.    

 

 

Figure 2. Bayesian network expressing the relationship 

between target locations, activities and evidence.  

 

Table 1. List of evidence and their locations 

Evidence Location Influence Type 

Dishes Kitchen sink Activity 

TV Living room Activity 

Slippers Bedroom entrance Location 

Shoes Back hallway Location 

Bedroom light Bedroom Location 

Living room light Living room Location 

Kitchen light Kitchen Location 

Guest room light Guest room Location 

Office light Office Location 

 

The ELA model which represents the initial joint user 

evidence belief 𝑏0 is represented as a combination of the four 

PDFs:  

 
𝑏0 = 𝑃(𝑟𝑗 , 𝜃1,𝑚, 𝜃2,𝑚, … , 𝜃𝐾,𝑚| 𝑡𝑙) =

= ∑ 𝑃(𝑎𝑖  | 𝑡𝑙) (∏ 𝑃 (𝜃𝑘,𝑚 | 𝑎𝑖)

𝑘′

𝑘=1

) 𝑃(𝑟𝑗 | 𝑎𝑖) ( ∏ 𝑃 (𝜃𝑘,𝑚 | 𝑟𝑗)

𝐾

𝑘=𝑘′+1

)

𝐼

𝑖=1

  
, (1) 

 

where {𝑒1, 𝑒2, … , 𝑒𝑘′} represents the set of evidence associated 

with activities, and {𝑒𝑘′+1, 𝑒𝑘′+2, … , 𝑒𝐾} represents the set of 

evidence associated with locations. The first term is given by 

the activity-time PDF; the second term by the evidence-activity 

PDF; the third term by the location-activity PDF, and the last 

term by the evidence-location PDF, respectively. 

POMDP FORMULATION FOR THE SEARCH PLANNER 
A POMDP  represents a tuple of < 𝑆, 𝛼, Ω, 𝐹, 𝑂, 𝑊 >, 

where  𝑆 is a finite set of states, 𝛼 = {𝛼1, 𝛼2, … , 𝛼𝑌} is a finite 

set of actions, Ω is a finite set of observations, 𝐹 is the 

transition function, 𝑂 is the observation function, and 𝑊 is the 

reward function [22]. For our POMDP model, every state in 𝑆 

consists of four components: 1) time elapsed, 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑, since the 

beginning of the search, 2) robot location, 3) user location, and 

4) the state of each evidence. The user location and evidence 

states are partially observable. There is also an absorbed goal 

state, which corresponds to the scenario where the user is 

found. As previously mentioned, the possible actions in 𝛼 are 

searching for the user in a region and checking for evidence.  

 

 

Observation function: 

The observation function, 𝑂, calculates the probability of 

receiving an observation 𝑜, where 𝑜 ∈ Ω, after taking action 

𝛼 and entering a new state 𝑠′ [22]: 

 

𝑂(𝑠′, 𝛼, 𝑜)  =  𝑝(𝑜|𝑠′, 𝛼)  . (2) 

 

The possible observations for searching the user are “user 

present” and “user absent”, and the observations for checking 

evidence are “evidence present/on” and “evidence absent/off”. 

Within our model, we have also included perception errors 𝜖𝑈 

and 𝜖𝐸, respectively. These errors are with respect to detecting 

users and evidence in the environment.  

 

Transition function: 

The transition function 𝐹 maps the current state 𝑠 and 

action 𝛼𝑖 to a new state 𝑠′ [22]: 

 

𝐹(𝑠, 𝛼, 𝑠′)  =  𝑝(𝑠′ |𝑠, 𝛼) . (3) 

 

If the action is to search the region that the user is occupying, 

the probability of finding the user and thus transitioning into 

the absorbed goal state is (1 −  𝜖𝑈). When the action is to 

check for evidence, the evidence state will transition into the 

observed evidence state with a probability of (1 − 𝜖𝐸). After 

taking an action, 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑 is incremented by the time required 

by the action.  

 

Rewards:  

The reward function 𝑊 assigns a reward for each state-

action pair and the observation received as a result of 

performing the action. Given the time limit, 𝑡𝑙𝑖𝑚𝑖𝑡 , the reward 

function is represented as: 

 

𝑊(𝑠, 𝛼) = { 
𝑡𝑙𝑖𝑚𝑖𝑡 − 𝑡𝑒𝑙𝑎𝑝𝑠𝑒𝑑        𝑖𝑓 𝑜 = "𝑢𝑠𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑡"

0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  . (4) 

 

Namely, a reward equal to the remaining search time is given 

only when the user is found. No reward is given for any 

intermediate actions. The reward is assigned in this manner so 
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that the robot is encouraged to find the user before the time 

limit.  

 

Belief Update: 

The initial belief, 𝑏0, is the joint user evidence belief from the 

ELA model. After the robot takes action 𝛼 and receives an 

observation 𝑜, the information obtained from the observation is 

incorporated into the search planner by updating the belief, 

𝑏𝛼
𝑜(𝑠′). This belief represents the probability that the robot 

transitions to 𝑠′ after action 𝛼 and receives observation 𝑜, and is 

updated using Bayes Rule: 

 

𝑏𝛼
𝑜(𝑠′) =

𝑝(𝑜|𝑠′, 𝛼)  ∑ 𝑝(𝑠′|𝑠, 𝛼)𝑏(𝑠)𝑠

∑ [𝑝(𝑜|𝑠′, 𝛼) ∑ 𝑝(𝑠′|𝑠, 𝛼)𝑏(𝑠)𝑠 ]𝑠′

 
, (5) 

 

where ∑ 𝑝(𝑠′|𝑠, 𝛼)𝑏(𝑠) is the sum of the probabilities that 

belief state 𝑏(𝑠) will transition into the new state 𝑠′.  
Given a policy 𝜋, the expected total discounted reward at 

belief 𝑏(𝑠) can be computed using the value function [13]: 

  

𝑉𝜋(𝑏) = ∑ 𝑊(𝑠, 𝑎)𝑏(𝑠)

𝑠

+ 𝛾 ∑ 𝑝(𝑜|𝑠′, 𝛼)𝑝(𝑠′|𝑠, 𝛼)𝑏(𝑠)𝑉𝜋(𝑏𝛼
𝑜)

𝑜,𝑠,𝑠′

 

, (6) 

 

 

 

where 𝛾 is the discount factor (we use  𝛾 = 1). The first term is 

the expected immediate reward and the second term is the 

expected discounted future reward. Our aim is to maximize the 

probability of reaching the absorbed goal state to obtain an 

overall positive reward.  

The search planner constructs an optimal policy 𝑉𝜋
∗ that 

satisfies Bellman’s Equation, which corresponds to choosing 

the best actions to maximize the value function in Eqn. 6. 

Several online and offline techniques have been developed to 

find an optimal policy. For our search task, an online solver is 

required since it updates the belief after each observation to aid 

in planning the next action. In order to compute the policy and 

perform belief updates in real-time, we use the online 

Determinized Sparse Partially Observable Tree (DESPOT) 

technique [23]. A common technique to solve the POMDP 

problem is to express all possible sequence of actions and 

observations as a belief tree. In our case, a sequence 

corresponds to a possible search scenario where the robot either 

searches a region or looks for evidence until the user is found. 

DESPOT samples several sequences from the belief tree and 

finds the optimal policy from the sampled tree, thus giving a 

near-optimal policy with reduces computational complexity. 

Once the policy is generated, the robot executes the first action 

from the policy and receives an observation. The belief is 

updated based on the observation and the process is repeated 

until the robot finds the user or the time limit is reached. 

EXPERIMENTS 
To validate the performance of our proposed person search 

technique, we conducted simulated experiments in a personal 

home environment consisting of 5 separate rooms and two 

hallways, Fig. 3. The red lines represent boundaries between 

regions. The simulations consisted of a simulated mobile robot 

finding a single person living in the home. The robot is allowed 

to enter all regions except for the bathroom. The simulations 

were run on a computer with Intel® Core™ i5-6600 CPU and 

16GB of RAM. 

The Aruba dataset for an elderly female [24] was used to 

obtain the activity-time PDF and location-activity PDF. The 

dataset includes time-stamped location and activity events 

obtained from a smart home for the individual over the course 

of 220 days.  

To generate the evidence-location PDF and evidence-

activity-PDF, we need to obtain the probability of evidence 

being present given either the user location or user activity. 

Since the Aruba dataset does not contain evidence information, 

evidence was added to the dataset based on existing user 

location information and annotated activities, e.g. “meal 

preparation”, “washing dishes”, and “relaxing”. The conditions 

in which the evidence states are assigned are described in Table 

2.  Common household objects used during activities of daily 

living were chosen to demonstrate that our model can be 

generalizable to any home environment with a single elderly 

resident. For example, dishes used to prepare food are present 

in the kitchen sink during meal eating. The user was assumed to 

be watching TV if she was “relaxing” for more than 20 minutes 

in the living room. The user wears slippers around the house 

except when going into the bedroom, for which she leaves the 

slippers outside the bedroom door. It was also observed from 

the Aruba dataset that the user leaves home using the door in 

the back hallway, therefore, it is assumed that when she is home 

her shoes are beside the door in this hallway.  

The conditions for lights being on or off in each of the 

rooms are the same. As the user may not always have the light 

on in a room she is in, i.e., when there is natural light from 

outside, or she may not always be in a room for which the light 

is on, we use probabilities to represent the light evidence state 

as shown in Table 2.  

Once the evidence-location PDF and evidence-activity-

PDF are generated, they are used with the activity-time PDF 

and location-activity PDF to compute the ELA model using 

Eqn. 1. 

 

 

Figure 3. Home environment used in Aruba dataset. 
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Table 2. Evidence States and Conditions 

Evidence States and Conditions 

Dishes Present in the kitchen sink during “meal time”; 

absent otherwise 

TV On if the person is relaxing for more than 20 

minutes in the living room; off otherwise 

Slippers Present if the user is in the bedroom or bathroom; 

absent otherwise. 

Outdoor shoes Present in the back hallway when user is at home.  

Lights in the 

Bedroom, Living 

room, Kitchen, Guest 

room, and Office 

During the day (assumed to be before 6pm): 80% 

on if user is in the same room, 20% on if user is in 

a different room. 

At night: always on if user is in the same room, 

20% on if user is in a different room. 

 

A total of 1633 trials were conducted during a 10 am to 11 

pm time interval, with at least one trial at the start of each hour. 

The search limit was set to 4 minutes based on the small size of 

the environment. The robot moved in the environment with a 

speed of 0.5m/s. The recognition time needed for the evidence 

was 5 seconds and for the user was 30 seconds, respectively. 

The same trials were simulated under two scenarios with: 𝜖𝑈 =
𝜖𝐸 = 0, and 𝜖𝑈 = 𝜖𝐸 = 0.1. If there is less than 30 seconds 

remaining for the robot to search a region, the probability of 

finding the user is reduced to the time remaining divided by the 

time required to search a region.   

RESULTS AND DISCUSSION 
The performance of our proposed person search approach 

(ELA + evidence) was compared against: 1) a baseline POMDP 

technique without prior user information and a uniform initial 

user belief, and 2) a POMDP search technique using only the 

ELA model to generate the initial belief but not considering 

evidence during the search.  

Fig. 4 presents the results for all three methods. Fig. 4(a) 

shows the results when there is no perception error (i.e., 𝜖𝑈 and 

𝜖𝐸 are both zero), and Fig. 4(b) shows results when perception 

error is 10% (i.e., 𝜖𝑈 and 𝜖𝐸 are 0.1), respectively. Success rates 

are shown with respect to the robot finding a user by the 1,2,3 

and 4 minute marks to investigate the performance between the 

three methods during the search. As can be seen in the figure, 

the baseline technique consistently has the lowest success rate.  

For both conditions, the success rate for our ELA + evidence 

method is higher than the ELA method with a difference of 

11.3% and 9.4% at the 4 minute search time limit.  

To investigate how the methods handle the dynamic 

behavior of the user, we also examined the number of regions 

the user occupied during the search. Namely, the user must be 

in at least two regions during the search to be considered 

dynamic. Fig. 5 shows the success rate of finding the user given 

the number of regions with 𝜖𝑈 and 𝜖𝐸 equal to 0 and 0.1, 

respectively. As expected, the success rate is the lowest for the 

baseline method regardless of the number of regions the user 

occupies.  Furthermore, for the no perception error condition, 

our ELA + evidence method performs better than the ELA 

method by 7.5% (8-10 regions) to 12.0% (2-4 regions). When 

perception error is added, our proposed ELA + evidence 

method still outperforms the ELA method by 7.9% (2-4 

regions) to 12.9% (>10 regions). This highlights the robustness 

of the ELA + evidence method to dynamic user behaviors. 

 

 
 

(a) 

 
 

(b) 

Figure 4. Search success rate for finding the user with (a) no 

perception error, and (b) with 10% perception error (𝝐𝑼 

and 𝝐𝑬 are 0.1) within the 4-minute time limit. 
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(a) 

 

(b) 

Figure 5. Success rate with respect to the number of regions 

the dynamic user has visited during the search with (a) no 

perception error, and (b) with 10% perception error (𝝐𝑼 

and 𝝐𝑬 are 0.1).  

 

We further investigated the influence of using evidence 

within our proposed search approach by looking specifically at 

cases where evidence was explicitly used during the search. 

Two such cases are discussed herein in more detail, which are 

summarized in Table 3. In both cases, the robot initially starts 

in the living room. 

 

Case 1: In case 1, the user is initially in the front hallway. 

The robot searches for the user in the living room first and does 

not find the user, so it moves on to check the kitchen light to 

see if there is evidence that the user would be there. In the 

meantime, the user walks into the living room. After the robot 

sees that the kitchen light is off, it goes to the living room to see 

if the light is on, since the ELA model suggests that the user has 

a 54% probability of being in the living room. When it detects 

that the light is on, it searches the living room again and finds 

the user in a total time of 1.3 minutes.  

 

Case 2: In case 2, the ELA model suggests that the 

probability of the user being in the living room is over 80%, so 

the robot first searches the living room directly without 

checking for any evidence. However, the user is not found 

there. As the probabilities in the ELA model for all the other 

rooms are under 3%, instead of searching these rooms, the 

robot looks for evidence including if the light is on in each of 

these rooms or the slippers are in front of the bedroom in a 

counter-clockwise search trajectory.  This allows the robot to 

gather information on most of the regions in a very short period 

of time without having to search each room. In this case, when 

the robot detects that the light is on in the office, it starts to 

search the office and finds the user in a total time of 1.6 

minutes, even though the probability of the user being in the 

office is the second lowest among all regions.  

 

Table 3. Two scenarios where the evidence-based planner 

benefited from searching for evidence 

Scenario 
Top three region 

with highest belief 

Sequence of actions and 

observations 

1 
Living room, 

kitchen, guest room 

Living room (target absent), kitchen 

light (off), living room light (on), 

living room (user present) 

2 
Living room, 

bathroom, bedroom 

Living room (target absent), slippers 

(absent), bedroom light (off), office 

light (on), office (user present) 

 

CONCLUSION 
In this paper, we present a unique POMDP search planner 

for addressing the problem of an assistive robot searching for a 

single dynamic user in a multi-room home environment. The 

novelty of our approach is in the inclusion of checking for 

evidence during the search. Evidence is represented as common 

household objects, and is directly correlated with user activities 

and locations. The observation of evidence during the search is 

used to inform the planner about the current user location. Our 

planner uses past user location, activity and evidence data to 

generate the initial joint user evidence belief for the POMDP 

model. Then the POMDP model is used to determine which 

region to search for the user or which evidence to check such 

that the probability of finding the user within the time limit is 

maximized. Comparison results of our evidence-based search 

planner with other POMDP-based planners show that we are 

able to achieve a higher success rate of finding a dynamic user. 

Furthermore, our approach is more robust to dynamic users. 

Our future work consists of testing our approach in varying 

environment sizes and configurations, and integrating it onto 

our socially assistive robot platform. 
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